Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 15 города Кузнецка

Согласовано на заседании Педагогического совета МБОУ СОШ №15 города Кузнецка

Протокол № 11 от 29.08.2025 г.

РАБОЧАЯ ПРОГРАММА

элективного курса по химии «Трудные вопросы изучения химии» среднее общее образование

Составитель: Веретенникова О.А., учитель химии

Пояснительная записка

Рабочая программа элективного курса по химии на уровне среднего общего образования составлена на основе требований к результатам освоения ФОП СОО, представленных в ФГОС СОО, а также федеральной рабочей программы воспитания, Рабочей программы воспитания МБОУ СОШ №15 города Кузнецка, с учётом «Концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы».

Общее число часов для изучения элективного курса 68 часов: в 10 классе -34 часа (1 час в неделю), в 11 классе 34 часа (1 час в неделю).

Рабочая программа элективного курса включает:

- содержание учебного предмета (по годам обучения);
- планируемые результаты освоения учебного предмета: личностные, метапредметные (формируются в течение всего периода обучения программы), предметные (по годам обучения);
 - тематическое планирование (по годам обучения).

Элективный курс представлен в виде практикума, который позволит восполнить пробелы в знаниях учащихся по вопросам решения заданий разных типов в органической химии и начать целенаправленную подготовку к сдаче итогового экзамена по химии.

Решение задач занимает в химическом образовании важное место, так как это один из приемов обучения, посредством которого обеспечивается более глубокое и полное усвоение учебного материала по химии. Чтобы научиться химии, изучение теоретического материала должно сочетаться с систематическим использованием решения различных задач. В школьной программе существует эпизодическое включение расчетных задач в структуру урока, что снижает дидактическую роль количественных закономерностей, и может привести к поверхностным представлениям у учащихся о химизме процессов в природе, технике. Сознательное изучение основ химии немыслимо без понимания количественной стороны химических процессов.

Решение задач содействует конкретизации и упрочению знаний, развивает навыки самостоятельной работы, служит закреплению в памяти учащихся химических законов, теорий и важнейших понятий. Выполнение задач расширяет кругозор учащихся, позволяет устанавливать связи между явлениями, между причиной и следствием, развивает умение мыслить логически, воспитывает волю к преодолению трудностей. Умение решать задачи, является одним из показателей уровня развития химического мышления учащихся, глубины усвоения ими учебного материала.

Основным требованием к составлению или отбору задач является их химическое содержание, чёткость формулировки и доступность условия

задачи, использование в условии задачи сведений практического характера.

Структура занятия включает следующие формы работы: проверочные и самостоятельные работы в тестовой форме, составление тестовых заданий учащимися, составление алгоритмов задач, составление и защита авторских задач и цепочек превращения.

Главным назначением данного курса является:

- совершенствование подготовки учащихся с повышенным уровнем мотивации к изучению химии;
- сознательное усвоение теоретического материала по химии, умение использовать при решении задач совокупность приобретенных теоретических знаний, развитие логического мышления, приобретение необходимых навыков работы с литературой.

Цель курса:

Обобщение, систематизация, расширение и углубление знаний учащихся по разделам органической химии; формирование навыков решения задач по химии различных типов.

Задачи:

- 1. Совершенствование знаний о типах расчетных задач и алгоритмах их решения в органической химии.
 - 2. Решение расчетных задач повышенной сложности.
 - 3. Формирование навыков исследовательской деятельности.
- 4. Формирование потребности в приобретении новых знаний и способах их получения путем самообразования.
- 5. Подготовка к сдаче единого государственного экзамена (ЕГЭ) по химии.

Планируемые результаты освоения элективного курса

Федеральный государственный образовательный стандарт среднего общего образования устанавливает требования к результатам освоения обучающимися программ среднего общего образования (личностным, метапредметным и предметным). Научно-методической основой для разработки планируемых результатов освоения программ среднего общего образования является системно-деятельностный подход.

В соответствии с системно-деятельностным подходом в структуре личностных результатов освоения элективного курса на уровне среднего общего образования выделены следующие составляющие:

- осознание обучающимися российской гражданской идентичности
 готовности к саморазвитию, самостоятельности и самоопределению;
 - наличие мотивации к обучению;
- целенаправленное развитие внутренних убеждений личности на основе ключевых ценностей и исторических традиций базовой науки химии;

- готовность и способность обучающихся руководствоваться в своей деятельности ценностно-смысловыми установками, присущими целостной системе химического образования;
- наличие правосознания экологической культуры и способности ставить цели и строить жизненные планы.

Личностные результаты

Личностные результаты освоения элективного курса достигаются в единстве учебной и воспитательной деятельности в соответствии с гуманистическими, социокультурными, духовно-нравственными ценностями и идеалами российского гражданского общества, принятыми в обществе нормами и правилами поведения, способствующими процессам самопознания, саморазвития и нравственного становления личности обучающихся.

Личностные результаты освоения предмета «Химия» отражают сформированность опыта познавательной и практической деятельности обучающихся по реализации принятых в обществе ценностей, в том числе в части:

- 1) гражданского воспитания:
- осознания обучающимися своих конституционных прав и обязанностей, уважения к закону и правопорядку;
- представления о социальных нормах и правилах межличностных отношений в коллективе;
- готовности к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении химических экспериментов;
- способности понимать и принимать мотивы, намерения, логику и аргументы других при анализе различных видов учебной деятельности;
 - 2) патриотического воспитания:
- ценностного отношения к историческому и научному наследию отечественной химии;
- уважения к процессу творчества в области теории и практического применения химии, осознания того, что достижения науки есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда учёных и практиков;
- интереса и познавательных мотивов в получении и последующем анализе информации о передовых достижениях современной отечественной химии;
 - 3) духовно-нравственного воспитания:
 - нравственного сознания, этического поведения;
- способности оценивать ситуации, связанные с химическими явлениями, и принимать осознанные решения, ориентируясь на моральнонравственные нормы и ценности;
- готовности оценивать своё поведение и поступки своих товарищей с позиций нравственных и правовых норм и осознание последствий этих поступков;

- 4) формирования культуры здоровья:
- понимания ценностей здорового и безопасного образа жизни, необходимости ответственного отношения к собственному физическому и психическому здоровью;
- соблюдения правил безопасного обращения с веществами в быту, повседневной жизни и в трудовой деятельности;
- понимания ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;
- осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);
 - 5) трудового воспитания:
- коммуникативной компетентности в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;
- установки на активное участие в решении практических задач социальной направленности (в рамках своего класса, школы);
- интереса к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии;
- уважения к труду, людям труда и результатам трудовой деятельности;
- готовности к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учётом личностных интересов, способностей к химии, интересов и потребностей общества;
 - б) экологического воспитания:
- экологически целесообразного отношения к природе, как источнику существования жизни на Земле;
- понимания глобального характера экологических проблем, влияния экономических процессов на состояние природной и социальной среды;
- осознания необходимости использования достижений химии для решения вопросов рационального природопользования;
- активного неприятия действий, приносящих вред окружающей природной среде, умения прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;
- наличия развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;
 - 7) ценности научного познания:
- сформированности мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- понимания специфики химии как науки, осознания её роли в формировании рационального научного мышления, создании целостного

представления об окружающем мире как о единстве природы и человека, в познании природных закономерностей и решении проблем сохранения природного равновесия;

- убеждённости в особой значимости химии для современной цивилизации в её гуманистической направленности и важной роли в создании новой базы материальной культуры, решении глобальных проблем устойчивого развития человечества сырьевой, энергетической, пищевой и экологической безопасности, в развитии медицины, обеспечении условий успешного труда и экологически комфортной жизни каждого члена общества;
- естественно-научной грамотности: понимания сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нём изменений, умения делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;
- способности самостоятельно использовать химические знания для решения проблем в реальных жизненных ситуациях;
 - интереса к познанию и исследовательской деятельности;
- готовности и способности к непрерывному образованию и самообразованию, к активному получению новых знаний по химии в соответствии с жизненными потребностями;
- интереса к особенностям труда в различных сферах профессиональной деятельности.

Метапредметные результаты

Метапредметные результаты освоения элективного курса на уровне среднего общего образования включают:

- значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (материя, вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и другие);
- универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся;
- способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты отражают овладение универсальными учебными познавательными, коммуникативными и регулятивными действиями.

Овладение универсальными учебными познавательными действиями:

- 1) базовые логические действия:
- самостоятельно формулировать и актуализировать проблему, всесторонне её рассматривать;

- определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;
- использовать при освоении знаний приёмы логического мышления— выделять характерные признаки понятий и устанавливать их взаимосвязь, использовать соответствующие понятия для объяснения отдельных фактов и явлений;
- выбирать основания и критерии для классификации веществ и химических реакций;
- устанавливать причинно-следственные связи между изучаемыми явлениями;
- строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;
- применять в процессе познания, используемые в химии символические (знаковые) модели, преобразовывать модельные представления химический знак (символ) элемента, химическая формула, уравнение химической реакции при решении учебных познавательных и практических задач, применять названные модельные представления для выявления характерных признаков изучаемых веществ и химических реакций.
 - 2) базовые исследовательские действия:
- владеть основами методов научного познания веществ и химических реакций;
- формулировать цели и задачи исследования, использовать поставленные и самостоятельно сформулированные вопросы в качестве инструмента познания и основы для формирования гипотезы по проверке правильности высказываемых суждений;
- владеть навыками самостоятельного планирования и проведения ученических экспериментов, совершенствовать умения наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы относительно достоверности результатов исследования, составлять обоснованный отчёт о проделанной работе;
- приобретать опыт ученической исследовательской и проектной деятельности, проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.
 - 3) работа с информацией:
- ориентироваться в различных источниках информации (научнопопулярная литература химического содержания, справочные пособия, ресурсы Интернета), анализировать информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость;
- формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач определённого типа;

- приобретать опыт использования информационнокоммуникативных технологий и различных поисковых систем;
- самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и другие);
- использовать научный язык в качестве средства при работе с химической информацией: применять межпредметные (физические и математические) знаки и символы, формулы, аббревиатуры, номенклатуру;
- использовать и преобразовывать знаково-символические средства наглядности.

Овладение универсальными коммуникативными действиями:

- задавать вопросы по существу обсуждаемой темы в ходе диалога и/или дискуссии, высказывать идеи, формулировать свои предложения относительно выполнения предложенной задачи;
- выступать с презентацией результатов познавательной деятельности, полученных самостоятельно или совместно со сверстниками при выполнении химического эксперимента, практической работы по исследованию свойств изучаемых веществ, реализации учебного проекта и формулировать выводы по результатам проведённых исследований путём согласования позиций в ходе обсуждения и обмена мнениями.

Овладение универсальными регулятивными действиями:

- самостоятельно планировать и осуществлять свою познавательную деятельность, определяя её цели и задачи, контролировать и по мере необходимости корректировать предлагаемый алгоритм действий при выполнении учебных и исследовательских задач, выбирать наиболее эффективный способ их решения с учётом получения новых знаний о веществах и химических реакциях;
- осуществлять самоконтроль своей деятельности на основе самоанализа и самооценки.

Предметные результаты

Предметные результаты освоения программы элективного курса среднего общего образования по химии ориентированы на обеспечение преимущественно общеобразовательной и общекультурной подготовки обучающихся. Они включают специфические для учебного предмета «Химия» научные знания, умения и способы действий по освоению, интерпретации и преобразованию знаний, виды деятельности по получению нового знания и применению знаний в различных учебных и реальных жизненных ситуациях, связанных с химией. В программе по химии предметные результаты представлены по годам изучения.

К концу обучения в 10 классе предметные результаты освоения элективного курса отражают:

— сформированность представлений о химической составляющей естественно-научной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, её функциональной

грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает:

- основополагающие понятия (химический элемент, атом, электронная оболочка атома, молекула, валентность, электроотрицательность, химическая связь, структурная формула (развёрнутая и сокращённая), моль, молярная масса, молярный объём, углеродный скелет, функциональная группа, радикал, изомерия, изомеры, гомологический ряд, гомологи, углеводороды, кислород и азотсодержащие соединения, мономер, полимер, структурное звено, высокомолекулярные соединения);
- теории и законы (теория строения органических веществ А.М.
 Бутлерова, закон сохранения массы веществ);
 - закономерности, символический язык химии;
- мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших органических веществ в быту и практической деятельности человека;
- сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании состава, строения и превращений органических соединений;
- сформированность умений использовать химическую символику для составления молекулярных и структурных (развёрнутой, сокращённой) формул органических веществ и уравнений химических реакций, изготавливать модели молекул органических веществ для иллюстрации их химического и пространственного строения;
- сформированность умений устанавливать принадлежность изученных органических веществ по их составу и строению к определённому классу/группе соединений (углеводороды, кислород и азотсодержащие соединения, высокомолекулярные соединения), давать им названия по систематической номенклатуре (IUPAC), а также приводить тривиальные названия отдельных органических веществ (этилен, пропилен, ацетилен, этиленгликоль, глицерин, фенол, формальдегид, ацетальдегид, муравьиная кислота, уксусная кислота, олеиновая кислота, стеариновая кислота, глюкоза, фруктоза, крахмал, целлюлоза, глицин);
- сформированность умения определять виды химической связи в органических соединениях (одинарные и кратные);
- сформированность умения применять положения теории строения органических веществ А.М. Бутлерова для объяснения зависимости свойств веществ от их состава и строения; закон сохранения массы веществ;
- сформированность умений характеризовать состав, строение, физические и химические свойства типичных представителей различных классов органических веществ (метан, этан, этилен, пропилен, ацетилен, бутадиен-1,3, метилбутадиен-1,3, бензол, метанол, этанол, этиленгликоль, глицерин, фенол, ацетальдегид, муравьиная и уксусная кислоты, глюкоза,

крахмал, целлюлоза, аминоуксусная кислота), иллюстрировать генетическую связь между ними уравнениями соответствующих химических реакций с использованием структурных формул;

- сформированность умения характеризовать источники углеводородного сырья (нефть, природный газ, уголь), способы их переработки и практическое применение продуктов переработки;
- сформированность умений проводить вычисления по химическим уравнениям (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции);
- сформированность умений владеть системой знаний об основных методах научного познания, используемых в химии при изучении веществ и химических явлений (наблюдение, измерение, эксперимент, моделирование), использовать системные химические знания для принятия решений в конкретных жизненных ситуациях, связанных с веществами и их применением;
- сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;
- сформированность умений планировать и выполнять химический эксперимент (превращения органических веществ при нагревании, получение этилена и изучение его свойств, качественные реакции органических веществ, денатурация белков при нагревании, цветные реакции белков) в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;
- сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой информации, Интернет и других);
- сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых органических веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;
- для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

К концу обучения в 11 классе предметные результаты освоения элективного курса отражают:

– сформированность представлений: о химической составляющей естественно-научной картины мира, роли химии в познании явлений природы,

в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает:

- основополагающие понятия (химический элемент, атом, изотоп, s-, p-, d- электронные орбитали атомов, ион, молекула, моль, молярный объём, валентность, электроотрицательность, степень окисления, химическая связь (ковалентная, ионная, металлическая, водородная), кристаллическая решётка, типы химических реакций, раствор, электролиты, неэлектролиты, электролитическая диссоциация, окислитель, восстановитель, скорость химической реакции, химическое равновесие);
- теории и законы (теория электролитической диссоциации, периодический закон Д.И. Менделеева, закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях), закономерности, символический язык химии, мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших неорганических веществ в быту и практической деятельности человека;
- сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании неорганических веществ и их превращений;
- сформированность умений использовать химическую символику для составления формул веществ и уравнений химических реакций, систематическую номенклатуру (IUPAC) и тривиальные названия отдельных неорганических веществ (угарный газ, углекислый газ, аммиак, гашёная известь, негашёная известь, питьевая сода, пирит и другие);
- сформированность умений определять валентность и степень окисления химических элементов в соединениях различного состава, вид химической связи (ковалентная, ионная, металлическая, водородная) в соединениях, тип кристаллической решётки конкретного вещества (атомная, молекулярная, ионная, металлическая), характер среды в водных растворах неорганических соединений;
- сформированность умений устанавливать принадлежность неорганических веществ по их составу к определённому классу/группе соединений (простые вещества – металлы и неметаллы, оксиды, основания, кислоты, амфотерные гидроксиды, соли);
- сформированность умений раскрывать смысл периодического закона Д.И. Менделеева и демонстрировать его систематизирующую, объяснительную и прогностическую функции;
- сформированность умений характеризовать электронное строение атомов химических элементов 1–4 периодов Периодической системы химических элементов Д.И. Менделеева, используя понятия «s-, p-, d-электронные орбитали», «энергетические уровни», объяснять закономерности

изменения свойств химических элементов и их соединений по периодам и группам Периодической системы химических элементов Д.И. Менделеева;

- сформированность умений характеризовать (описывать) общие химические свойства неорганических веществ различных классов, подтверждать существование генетической связи между неорганическими веществами с помощью уравнений соответствующих химических реакций;
- сформированность умения классифицировать химические реакции по различным признакам (числу и составу реагирующих веществ, тепловому эффекту реакции, изменению степеней окисления элементов, обратимости реакции, участию катализатора);
- сформированность умений составлять уравнения реакций различных типов, полные и сокращённые уравнения реакций ионного обмена, учитывая условия, при которых эти реакции идут до конца;
- сформированность умений проводить реакции, подтверждающие качественный состав различных неорганических веществ, распознавать опытным путём ионы, присутствующие в водных растворах неорганических веществ;
- сформированность умений раскрывать сущность окислительновосстановительных реакций посредством составления электронного баланса этих реакций;
- сформированность умений объяснять зависимость скорости химической реакции от различных факторов; характер смещения химического равновесия в зависимости от внешнего воздействия (принцип Ле Шателье);
- сформированность умений характеризовать химические процессы, лежащие в основе промышленного получения серной кислоты, аммиака, а также сформированность представлений об общих научных принципах и экологических проблемах химического производства;
- сформированность умений проводить вычисления с использованием понятия «массовая доля вещества в растворе», объёмных отношений газов при химических реакциях, массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ, теплового эффекта реакции на основе законов сохранения массы веществ, превращения и сохранения энергии;
- сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;
- сформированность умений планировать и выполнять химический эксперимент (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ с помощью универсального индикатора, влияние различных факторов на скорость химической реакции, реакции ионного обмена, качественные реакции на сульфат-, карбонат- и хлорид-анионы, на катион аммония, решение экспериментальных задач по темам «Металлы» и «Неметаллы») в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием,

представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

- сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой коммуникации, Интернет и других);
- сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;
- для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений.

СОДЕРЖАНИЕ ЭЛЕКТИВНОГО КУРСА

10 класс

Введение. (1 час)

Введение. Общие требования к решению химических задач. Использование знаний физики и математики при решении задач по химии. Особенности решения задач и составления химических уравнений в органической химии.

Тема 1. Теория строения органических соединений. (2 часа)

Основные положения теории химического строения. Составление гомологов, изомеров, структурных формул по названиям веществ. Принципы построения названий органических веществ

Тема 2. Углеводороды. (11 часов)

Химические свойства алканов, алкенов, алкинов, алкадиенов, бензола; качественные реакции, изомерия, номенклатура углеводородов. Их применение на основе свойств. Вычисление количества изомеров, нахождение формул веществ по известным массовым долям или продуктам сгорания. Составление и решение генетических цепочек разных видов.

Тема 3. Кислородсодержащие органические соединения. (6 часов)

Химические свойства, качественные реакции, именные реакции спиртов, альдегидов и кетонов, карбоновых кислот, фенолов. Влияние строения на химические свойства веществ. Вычисление количества изомеров, нахождение формул веществ по известным массовым долям или продуктам сгорания. Составление и решение генетических цепочек разных видов.

Тема 4. Органические вещества клетки. (3 часа)

Жиры, углеводы, сложные эфиры, белки. Вычисление количества изомеров, нахождение формул веществ по известным массовым долям или продуктам сгорания. Составление и решение генетических цепочек разных видов.

Тема 5. Азотсодержащие органические соединения. (4 часа)

Амины, аминокислоты, белки, нуклеиновые кислоты. Решение задач на вывод формулы вещества. Решение генетических цепочек.

Тема 6. Полимеры. (1 час)

Высокомолекулярные органические соединения. Составление реакций полимеризации. Решение задач по уравнениям химической реакции для полимеров.

Тема 7. Решение экспериментальных задач по органической химии. (3 часа)

Решение экспериментальных задач на распознавание веществ в органической химии. Проведение практической работы с применением знаний качественных реакций в органической химии и методов качественного анализа.

Тема 8. Решение задач повышенной сложности. (2 часа)

Решение заданий повышенного уровня из материалов Единого Государственного Экзамена. Разбор наиболее сложных вопросов. Повторение алгоритмов решения задач (подготовка к зачету).

Итоговое занятие (1 час)

Итоговые зачеты по полугодиям. Составление и защита авторских задач, цепочек превращения.

11 класс

Структура контрольно-измерительных материалов ЕГЭ по химии (1 час).

Спецификация ЕГЭ по химии 2026 г. План экзаменационной работы ЕГЭ по химии 2026 г. (ПРИЛОЖЕНИЕ к спецификации). Кодификатор элементов содержания по химии для составления КИМов ЕГЭ 2026 г. Контрольно-измерительные материалы по химии 2025 г. (анализ типичных ошибок).

Тема 1. Теоретические основы химии. Общая химия (8 часов)

1.1. Химический элемент

Современные представления о строении атома. Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атома. Основное и возбужденное состояние

атомов.

Периодический закон и периодическая система химических элементов Д.И. Менделеева. Радиусы атомов, их периодические изменения в системе химических элементов. Закономерности изменения химических свойств элементов и их соединений по периодам и группам. Понятие о радиоактивности.

1.2. Химическая связь и строение вещества

Ковалентная химическая связь, еè разновидности (полярная и неполярная), механизмы образования. Характеристики ковалентной связи (длина и энергия связи). Ионная связь. Металлическая связь. Водородная связь.

Электроотрицательность. Степень окисления и валентность химических элементов. Вещества молекулярного и немолекулярного строения. Зависимость свойств веществ от особенностей их кристаллической решетки.

1.3. Химические реакции

1.3.1. Химическая кинетика

Классификация химических реакций. Тепловой эффект химической реакции. Термохимические уравнения. Скорость реакции, еè зависимость от различных факторов.

Обратимые и необратимые химические реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов.

1.3.2. Теория электролитической диссоциации

Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты. Реакции ионного обмена.

Характерные химические свойства оксидов: основных, амфотерных, кислотных. Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства кислот. Характеристика основных классов неорганических соединений с позиции теории электролитической диссоциации (ТЭД).

Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка). Гидролиз солей.

Среда водных растворов: кислая, нейтральная, щелочная. Водородный показатель (pH). Индикаторы. Определение характера среды водных растворов веществ.

1.3.3. Окислительно-восстановительные реакции.

Реакции окислительно-восстановительные, их классификация Коррозия металлов и способы защиты от неè. Электролиз расплавов и растворов (солей, щелочей, кислот). Реакции, подтверждающие взаимосвязь различных классов

неорганических соединений.

1.4. Решение тренировочных задач по теме: «Теоретические основы химии. Общая химия» (по материалам КИМов ЕГЭ)

Вычисление массы растворенного вещества, содержащегося в определенной массе раствора с известной массовой долей. Расчеты: объемных отношений газов при химических реакциях. Расчеты: теплового эффекта реакции. Расчеты: массовой доли (массы) химического соединения в смеси.

Написание уравнений окислительно-восстановительных реакций, расстановка коэффициентов методом электронного баланса.

Тема 2. Неорганическая химия (10 часов)

2.1. Характеристика металлов главных подгрупп и их соединений

Общая характеристика металлов главных подгрупп I–III групп в связи с их положением в периодической системе химических элементов Д.И. Менделеева и особенности строения их атомов.

Характерные химические свойства простых веществ и соединений металлов - щелочных, щелочноземельных, алюминия.

2.2. Характеристика неметаллов главных подгрупп и их соединений

Общая характеристика неметаллов главных подгрупп IV–VII групп в связи с их положением в периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.

Характерные химические свойства простых веществ и соединений неметаллов - водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния.

2.3. Характеристика переходных элементов и их соединений

Характеристика переходных элементов — меди, цинка, хрома, железа по их положению в периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов.

Характерные химические свойства простых веществ и соединений переходных металлов – меди, цинка, хрома, железа.

2.4. Решение тренировочных задач по теме: «Неорганическая химия» (по материалам КИМов ЕГЭ)

Расчеты: массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Расчеты: массовой или объемной доли выхода продукта реакции от теоретически возможного. Расчеты: массовой доли (массы) химического соединения в смеси. Определение рН среды раствором солей.

Генетическая связь между основными классами неорганических соединений. Качественные реакции на неорганические вещества и ионы.

Тема 3. Органическая химия (10 часов)

3.1. Углеводороды

Теория строения органических соединений. Изомерия — структурная и пространственная. Гомологи и гомологический ряд.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа. Классификация и номенклатура органических соединений.

Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов. Природные источники углеводородов, их переработка. Механизмы реакций присоединения в органической химии. Правило В.В. Марковникова, правило Зайцева А.М.

Характерные химические свойства ароматических углеводородов: бензола и толуола. Механизмы реакций электрофильного замещения в органических реакциях.

Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.

3.2. Кислородсодержащие органические соединения

Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола. Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров. Биологически важные вещества: углеводы (моносахариды, дисахариды, полисахариды). Реакции, подтверждающие взаимосвязь углеводородов и кислородсодержащих органических соединений.

Органические соединения, содержащие несколько функциональных. Особенности химических свойств.

4.3. Азотсодержащие органические соединения и биологически важные органические вещества

Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Биологически важные вещества: жиры, белки, нуклеиновые кислоты. Гормоны. Ферменты. Металлорганические соединения.

4.4. Решение практических задач по теме: «Органическая химия» (по материалам КИМов ЕГЭ)

Нахождение молекулярной формулы вещества. Генетическая связь между неорганическими и органическими веществами. Генетическая связь

между основными классами неорганических веществ. Качественные реакции на некоторые классы органических соединений (алкены, алканы, спирты, альдегиды, карбоновые кислоты, углеводы, белки). Идентификация органических соединений.

Тема 5. Обобщение и повторение материала курса химии (4 часа)

Периодический Основные понятия законы химии. И Д.И.Менделеева и его физический смысл. Теория строения органических A.M. Бутлерова И особенности органических соединений. Окислительно-восстановительные реакции в неорганической и органической химии. Генетическая связь между неорганическими и органическими соединениями. Экспериментальные основы органической и неорганической химии.

Работа с контрольно-измерительными материалами ЕГЭ по химии. *Итоговый контроль в форме ЕГ*Э.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 класс

No	Тема занятия	Кол-во часов
1	Введение. Общие требования к решению задач по	1
	химии.	
2	Решение заданий по основным положениям теории	1
	строения органических соединений.	
3	Решение заданий по основным положениям теории	1
	строения органических соединений.	
4	Составление цепочек превращения с	1
	использованием алканов.	
5	Составление и решение цепочек превращения для	1
	алкенов.	
6	Решение задач на вывод молекулярной формулы по	1
	известным массовым долям для алканов и алкенов.	
7	Решение задач на вывод молекулярной формулы по	1
	продуктам сгорания для алканов и алкенов.	
8	Составление и решение цепочек превращения для	1
	алкинов.	
9	Решение задач по химическим уравнениям с	1

	использованием алкинов.	
10	Составление и решение цепочек превращения для	1
	алкадиенов.	
11	Составление и решение цепочек превращения для	1
	бензола.	
12	Задачи на определение объемной доли, мольной	1
	доли компонентов газовой смеси углеводородов.	
13	Решение задач по химическим уравнениям, если	1
	одно из исходных веществ дано в избытке.	
14	Зачет по теме «Углеводороды» (1-е	1
	полугодие)	
15		1
13	Составление и решение цепочек превращения для	1
	спиртов.	
16	Решение задач на вывод формулы спиртов.	1
17	Составление и решение цепочек превращения для	1
	альдегидов и кетонов.	
18	Составление и решение цепочек превращения для	1
	карбоновых кислот.	
19	Составление и решение цепочек превращения для	1
	сложных эфиров	
20	Генетическая связь без- и кислородосодержащих	1
	органических соединений.	
21	Составление и решение цепочек превращения для	1
22	жиров. Превращение жиров в организме человека.	1
22	Составление и решение цепочек превращения для	1
	углеводов. Превращение углеводов в организме человека.	
23	Решение задач на пищевые растворы.	1
		-
24	Составление и решение цепочек превращения для	1
	аминов.	
25	Составление и решение цепочек превращения для	1
	аминокислот.	
26	Задачи на разделение смесей на примере	1
	азотосодержащих органических соединений.	
27	Составление и решение переходов алкан - белок	1

28	Решение задач на образование и разрушение	1
	полимеров.	
29	Решение экспериментальных задач по теме	1
	«Углеводороды».	
30	Решение экспериментальных задач по теме	1
	«Производные углеводородов».	
31	Решение экспериментальных задач по теме «Белки.	1
	Жиры. Углеводы».	
32	Решение заданий из материалов ЕГЭ.	1
33	Решение заданий из материалов ЕГЭ.	1
34	Зачёт по курсу «Трудные вопросы в органической	1
	химии».	

11 класс

<u>No</u>	<u>Тема занятия</u>	Кол-во часов
1	Структура контрольно-измерительных материалов	1
	ЕГЭ по химии	_
2	Химический элемент и химическая связь.	1
3	Решение задач по теме: «Химический элемент и	1
	химическая связь».	
4	Химическая кинетика.	1
5	Решение задач по теме: «Химическая кинетика».	1
6	Теория электролитической диссоциации.	1
7	Решение задач по теме: «Теория электролитической	1
	диссоциации».	
8	Окислительно-восстановительные реакции.	1
9	Решение задач по теме: «Окислительно-	1
	восстановительные реакции».	
10	Характеристика металлов главных подгрупп и их	1
	соединений.	
11	Решение задач по теме: «Щелочные и	1
	щелочноземельные элементы и их соединения,	
	алюминий и его соединения».	
12	Характеристика неметаллов главных подгрупп и	1
	их соединений (галогены, подгруппа кислорода,	
	водород).	

13	Решение задач по теме: «Галогены».	1
14	Решение задач по теме: «Подгруппа кислорода,	1
	водород».	
15	Характеристика неметаллов главных подгрупп и	1
	их соединений (подгруппа азота, подгруппа	
	углерода).	
16	Решение задач по теме: «Подгруппа азота».	1
17	Решение задач по теме: «Подгруппа углерода».	1
18	Характеристика металлов побочных подгрупп и их	1
	соединений.	
19	Решение задач по теме: «Характеристика металлов	1
	побочных подгрупп и их соединений».	
20	Теория строения органических соединений.	1
2.5	Изомерия.	
21	Углеводороды – алканы, алкены, циклоалканы,	1
	алкины, алкадиены.	1
22	Решение задач по теме: «Предельные	1
22	углеводороды».	1
23	Решение задач по теме: «Непредельные	1
24	углеводороды».	1
	Ароматические углеводороды.	
25	Кислородсодержащие органические соединения	1
	(сравнительная характеристика спиртов, альдегидов и карбоновых кислот).	
26	Решение задач.	1
27		1
	Решение задач.	-
28	Азотсодержащие органические соединения и	1
20	биологически важные вещества.	1
29	Решение задач.	1
30	Решение задач.	1
31	Обобщение материала по теме школьного курса	1
	«Общая химия» - решение сложных задач, разбор	
	типичных ошибок.	1
32	Обобщение материала по теме школьного курса	1
	«Неорганическая химия» - решение сложных задач,	
22	разбор типичных ошибок.	1
33	Обобщение материала по теме школьного курса	1
	«Органическая химия» - решение сложных задач, разбор типичных ошибок.	
34	Итоговый контроль в форме ЕГЭ.	1
54	TITOTODDIN KONTPOND D WOPING DI O.	1